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A method of multiple-scale expansion is applied to the theory of incompressible 
isotropic turbulence in order to close the infinite system of cumulant equations. The 
dynamical equation for the energy spectrum derived from this method is found to give 
positive-definite solutions at all Reynolds numbers. At large Reynolds numbers the 
spectrum takes the form of Kolmogorov’s - 5 power spectrum in the inertial subrange, 
whose extent increases indefinitely with Reynolds number. The spectrum in the energy- 
containing range satisfies an inviscid similarity law, so that the rate of energy decay 
or of viscous dissipation is also independent of the viscosity. In  the higher wavenumber 
region beyond the inertial subrange the spectrum takes a universal form which is 
independent of its structure at lower wavenumbers. The universal spectrum is com- 
posed of three different subspectra, which are, in order of increasing wavenumber, the 
k-8 spectrum, the k-l spectrum and the exp [ - ~ k ~ ‘ ~ ]  spectrum, u being a constant. 
Various statistical quantities such as the energy, the skewness of the velocity deriva- 
tive, the microscale and the microscale Reynolds number are calculated from the 
numerical data for the energy spectrum. Theoretical results are discussed in detail in 
comparison with experimental results. 

1. Introduction 
The statistical theory of turbulence can be formulated either in terms of the prob- 

ability distribution functional of the random velocity field or in terms of an infinite 
set of the moments of various orders. The former approach leads to Hopf’s (1952) 
equation for the characteristic functional while the latter approach gives an infinite 
sequence of moment equations each relating a moment of nth order, n being a positive 
integer, with those of (n + 1)th order. At present no method of solving Hopf’s functional 
equation directly is known, so that the only alternative seems to be to deal with the 
moment equations or, in practice, a finite subset of them. In this approach, however, 
we &re confronted with a difficulty of indeterminacy since the number of unknown 

t Present address : Department of Mathematical Engineering, Sagami Institute of Techno- 
logy, Fujisawa 251, Japan. 
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moments always exceeds by one the number of equations. In  order to avoid this 
indeterminacy, a hypothesis is usually introduced to close the system of equations. 

One of the closure hypotheses proposed so far is the zero-fourth-order cumulant 
approximation, which was first introduced for turbulence by Millionshtchikov (1 941) 
and formulated for homogeneous isotropic turbulence by Proudman & Reid (1954) and 
Tatsumi (1955,1957). This hypothesis enables us to relate the fourth-order moment to 
the second-order ones as if for a joint normal probability distribution, and in this sense 
it is also called the quasi-normality hypothesis. Formally, this hypothesis is equivalent 
to the fourth-order approximation of the cumulant expansion or the logarithmic 
Taylor expansion of the characteristic functional. This expansion seems to be a natural 
and logical approach to a random system which has nearly normal structure as a whole. 
There is also experimental evidence for this hypothesis as the measured two-point 
fourth-order moments and second-order moments satisfy the above relation very 
closely (Uberoi 1953; Frenkiel & Klebanoff 1967; Van Atta & Chen 1968, 1969; Van 
Atta & Yeh 1970). 

In  homogeneous isotropic turbulence, when the moment equations have been closed 
by this hypothesis they can be written in the form of a dynamical equation for the 
energy spectrum function E(k,  t ) ,  where k is the wavenumber and t the time. For 
extremely large values of the Reynolds number R = uo/(vko),  u,, and ko being a repre- 
sentative velocity and wavenumber of the turbulence respectively and v the kinematic 
viscosity, the energy spectrum equation gives the following asymptotic solutions for 
different ranges of time (Tatsumi 1960): 

It may be interesting to compare these asymptotic spectra with Kolmogorov’s inertial- 
subrange spectrum 

where B is the rate of energy dissipation and K a non-dimensional constant (Kolmo- 
gorov 1941a,c). Neither (1.1) nor (1.2) is exactly in accordance with Kolmogorov’s 
spectrum (1.3), but their exponents - 1 and - 2 bracket Kolmogorov’s value -9. 

However, unphysical consequences of this hypothesis were discovered by Ogura 
(1963), who found through numerical integration of the energy spectrum equation 
that the spectrum takes negative values over a finite range of wavenumbers a t  large 
Reynolds numbers. The occurrence of the negative spectrum gives rise to oscillation 
and eventual divergence of the solution, and therefore the asymptotic spectrum (1.2) 
is not attainable at least from the initial conditions adopted by Ogura. Such a conse- 
quence of the hypothesis seems to cast a serious doubt on its validity at  large Reynolds 
numbers. 

Thenceforth several attempts have been made to clarify the nature of this contra- 
diction. Kawahara (1968) advanced the approximation a step further by working out 
the energy spectrum of Burgers turbulence under the zero-fifth-order cumulant 
approximation. It was found that the spectrum of this approximation still takes 
negative values at large Reynolds numbers, but it does so at higher wavenumbers and 
larger Reynolds numbers than those corresponding to the zero-fourth-order cumulant 
approximation. A similar trend in the solution was also observed by Tanaka (1969, 
1973), who calculated numerically the energy spectrum of inviscid Burgers turbulence 

E(k,  t )  = Kdk-8 ,  (1.3) 
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using the zero-fifth-order cumulant approximation and the Gram-Charlier expansion 
truncated at various orders. The occurrence of the negative spectrum is not excluded 
by any approximations examined, but the wavenumber of fist appearance of negative 
values becomes higher for a higher order of approximation and the spectrum in the 
energy-containing range of wavenumbers seems to converge to a limiting spectrum as 
the order of approximation increases. Thus it may be concluded from these results that 
a simple truncation of the cumulant expansion or the Gram-Charlier expansion cannot 
lead to a positive-definitive energy spectrum although it gives a good approximation 
in the lower wavenumber region. 

The physical reason for the failure of the zero-cumulant approximation in general 
was discussed in detail by Orszag (1970). He examined a model turbulence which obeys 
an inviscid truncated Navier-Stokes equation in which the viscosity v is identically 
zero and the Fourier expansion of the turbulent velocity field is truncated at a certain 
highest wavenumber. Concerning this model it is shown that the time reversibility of 
the zero-cumulant equations is not compatible with the unidirectional approach to 
the equilibrium and the lack of the proper relaxation time in the equations is responsible 
for the undamped oscillation of the solution around the equilibrium state. The occur- 
rence of the negative energy spectrum is accounted for as a manifestation of this more 
fundamental weakness of the zero-cumulant approximation. The same argument can 
be applied to real turbulence which is governed by the full Navier-Stokes equation 
provided that the energy is always contained in turbulent components of finite,wave- 
number. In  such a case the energy dissipation should vanish in the inviscid limit and 
the above-mentioned weakness of the zero-cumulant approximation would also appear 
in real turbulence. This is indeed what we experienced with the ordinary zero-cumu- 
lant approximation in real turbulence. 

In order to improve this weakness several authors introduced various forms of 
eddy viscosity, which represents the effect of nonlinear scrambling of eddies or turbulent 
components of different wavenumbers (Edwards 1964; Kraichnan 1964,1971 ; Herring 
1965, 1966; Leith 1971). In  these theories, the viscous damping of the cumulants is 
assumed to vanish in the inviscid limit and, in order to avoid time reversibility and the 
lack of a relaxation time in this limit, an eddy viscosity supplements the molecular 
viscosity or, more specifically, the viscous damping of the third-order cumulant. For 
the consequences of this kind of approximation reference may be made to the above 
papers and a numerical study by Herring t Kraichnan (1972). 

In the present work, we shall take an approach of a quite different nature. It is well 
known that in laminar flows a t  large Reynolds numbers the viscous effects are confined 
to vortex layers or filaments whose thickness or radius is proportional to vi (Saffman 
1968). This flow structure results in finite energy dissipation in the limit of vanishing 
viscosity. Now we expect that this characteristic of laminar flows is also possessed by 
turbulent flows since a particu1,ar realization of a turbulent flow is nothing but a solu- 
tion of the same equation as for laminar flows. Thus we postulate for turbulent flows 
that a finite energy dissipation persists in the limit of vanishing viscosity, i.e. 

e > 0 for v+O. (1.4) 

(1.5) 

This postulate is equivalent to assuming that 

E is independent of v for very small v. 

4-2 
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Independence of c and u is tacitly assumed by Kolmogorov (1941 a) in his first hypothe- 
sis of similarity that, for locally isotropic turbulence, the distribution functions of 
turbulent velocity are uniquely determined by e and u. Hence our postulate (1.4) has 
a common background with Kolmogorov’s hypothesis, but we are not going to use 
this hypothesis itself. 

It follows immediately from (1.4) that the energy spectrum, or the second-order 
cumulant, has finite viscous damping and consequently the characteristic length scale 
is proportional to uf since otherwise the energy dissipation e would not be finite in 
the inviscid limit. However, this does not mean that the length scale of order u )  is the 
smallest scale of the turbulence. In  turbulent flows the stretching of vortex layers and 
filaments due to non-uniform convection is much more vigorous than in laminar flows 
and the reduction in layers’ thickness and filaments’ radius gives rise to the generation 
of smaller length scales of order less than uk. In  the framework of the cumulant expan- 
sion this phase of motion is represented by the nonlinear terms, or the third- and 
higher-order cumulants. Thus it seems natural to expect that the higher-order cumu- 
lants have smaller length scales of orders u, uq, ..., and consequently that they are 
subject to larger viscous damping than the second-order cumulant. 

In  this context it should be noted that Kolmogorov’s similarity hypothesis leads to 
an internal length scale 1 = (u3/e) f ,  which is proportional to uf as u-+ 0 if the postulate 
(1.5) is accepted. Then there may arise the question why turbulence should have u% 
rather than u* dependence for the length scale of the viscous effects. This question is 
expected to be answered within the framework of the present expansion, which uses 
a set of different length scales. In  fact it  is shown in $7.2 below that the energy spectrum 
derived from our approximation scheme actually satisfies Kolmogorov’s similarity law, 
with the length scale proportional to uf. 

Summing up the above arguments, it may be said that our approximation scheme 
is a t  least free from such defects of the zero-cumulant approximation as were pointed 
out by Orszag, and is based upon an entirely different physical idea from that of the 
eddy-viscosity theories which assume vanishing effects of the molecular viscosity in the 
inviscid limit. 

Now let us turn to the mathematical side of our approximation scheme. Formally 
speaking, the failure of the zero-fourth-cumulant approximation is a special case of 
breakdown of a regular perturbation scheme caused by the growth of a secular term. 
So far a number of methods and techniques have been devised for resolving this 
difficulty, most of them being singular perturbation methods which use multiple 
length or time scales to describe the nonlinear phenomena in question. A typical 
example of this method is the multiple time scale expansion method, originally due 
to Bogoliubov (1962). 

The idea of different characteristic scales is by no means new to the theory of turbu- 
lence. It is common practice to expand the velocity field of incompressible turbulence 
in three-dimensional Fourier series and associate a Fourier component of wavenumber 
k with an eddy motion of a length scale 2n-/lkl. Each Fourier component or eddy 
motion is supposed to have itP own characteristic time scale, and usually the shorter 
time scales are associated with the smaller eddy motions or the larger wavenumber 
components as in Kolmogorov’s universal equilibrium theory. Thus turbulence as 
a whole is regarded as composed of an infinite number of component motions associated 
with different time and length scales. 
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The method of multiple time scales was first applied by Malfliet (1969) to Burgers 
turbulence together with the zero-fourth-order cumulant hypothesis and it was shown 
that the energy spectrum derived from this method is positive definite at all Reynolds 
numbers. This result appears to be very promising and worth further investigation. 

The multiple-scale expansion of Malfliet has two peculiar features. First, the turbu- 
lent velocity field is not expanded in the usual Fourier series but in terms of solutions 
of the linearized equation. This procedure amounts to taking the function 

F(k,  t )  = E(k, t )  exp [2vk2t], 

instead of E(k, t )  itself, as the most slowly varying function in the multiple-time-scale 
expansion. In  other words, the purely viscous spectrum E(k, t )  = E(k,  0) exp [ - 2vk2t] 
is taken as the first approximation in the expansion. This choice of the first approxima- 
tion does not seem to be adequate for strong turbulence. The second feature of his 
expansion is that the expansion parameter is not a real small parameter like that in the 
kinetic theory of statistical mechanics but a formal parameter which is eventually 
taken to be unity.? This makes the physical interpretation of his expansion rather 
obscure. 

If the method of multiple-scale expansion is to be applied to turbulence the expan- 
sion parameter should be obtained from the field of turbulence itself. As already seen 
above there really exists a small parameter vk for the length scale of the energy 
spectrum. In what follows a multiple-scale expansion is formulated using this para- 
meter. In  $$ 2 and 3 an infinite system of equations governing the cumulants of different 
orders is derived from the Hopf equation for the characteristic functional. In  $ 4  the 
method of multiple-scale expansion is applied to this system of cumulant equations to 
give a closed dynamical equation for the energy spectrum. The initial-value problems 
for this equation are solved numerically in $5, and the numerical results concerning 
the energy spectrum, the energy, the skewness, the microscale and so on are examined 
and discussed in detail in $3 6-9. 

2. Equation for the characteristic functional 

of continuity and motion: 
The motion of an incompressible viscous fluid is governed by the following equations 

divu = 0,  (2 .1 )  

a u / 8 t - v A u  = -p-lgradp-(u.grad)u, (2 .2 )  

where u = u(x, t )  denotes the velocity, p = p(x, t )  the pressure, x the Cartesian co- 
ordinates, t the time, p the density and v the kinematic viscosity of the fluid. 

It is common practice in the theory of turbulence to introduce the Fourier transform 
of u(x,t): 

v (k , t )  = (.Zn)-3 /u(x,t)exp[-ik.x]dx, (2 .3 )  

where k is the wavenumber vector and the integration is taken over the whole infinite 
space. For homogeneous turbulence, with which we are concerned, the right-hand 
side of (2 .3)  represents a divergent integral since u(x, t )  does not vanish for 1x1 -too, 

t Malfliet suggests the possibility of taking v2 as the smell paramater. This choice, however, 
leads to inconsistent ordering of higher-order moments. 
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so that v(k,t) should be understood as a generalized function. Since the velocity 
u(x, t )  is real, v(k, t )  is a complex-valued function satisfying the relation 

(2 .4  

where the asterisk denotes the complex conjugate. The inverse Fourier transform of 
(2.3) gives 

(2.5) 

k.v(k,t) = 0.  (2.6) 

V( - k, t )  = V*(k, t ) ,  

u(x, t )  = I v(k, t )  exp [ik. x] dk. 

Substitution from (2.5) into (2.1) gives the orthogonality condition 

Taking the Fourier transform of (2.2) and eliminating the pressurep by making use of 
(2.6), we obtain the following equation for v(k, t ) :  

( i + v k 2 )  v(k,t) = -i (k.v(k-k‘,t)) v(k,t)--(k.v(k’,t)))dk, k (2.7) s { k2 

where k = lkl. 
Now we define the characteristic functional of the probability distribution of 

v(k,t). Let us denote by z(k) a complex-valued argument function satisfying the 
condition 

(2.8) Z( - k) = Z*(k) 

and vanishing sufficiently rapidly as k + 00 to make the real-valued integral 

( 2 , ~ )  = Iz(k).v*(k,t)dk (2.9) 

convergent. Then the characteristic functional is defined as 

@[W, tl = (exp [i(z, v)l), (2.10) 

where the angle brackets indicate the average with respect to the probability distribu- 
tion of the function v(k) at time t .  

The equation for the characteristic functional @[z(k), t ]  is derived from the law of 
conservation of probability and (2.7) as 

with A,(k) = Sir - ki kj/k’, (2.12) 

where S/Sz,(k) represents the functional derivative, the suffixes i, j and k denote the 
components of a vector, and the summation convention for repeated suffixes is used 
hereafter. Equation (2.1 l) ,  which was first derived by Hopf (1952), constitutes the 
basic equation of homogeneous turbulence in an incompressible viscous fluid, from 
which all the equations for the single-time moments of different orders can be derived. 

It should be noted that an arbitrary solution of (2.11) is not necessarily a charac- 
teristic functional, but in order that it is admitted as a characteristic functional it 
should be a continuous positive-definite functional satisfying the conditions 

@ [ O , t ]  = 1, I@[~(k),t]l Q 1, @[-z(k),t] = @*[~(k),t]. (2.13) 
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In homogeneous turbulence the probability distribution is invariant under an arbitrary 
parallel transformation of the co-ordinates x, so that 0 must satisfy an additional 
condition which f0110WS from (2.3), (2.9) and (2.10), i.e. 

@{exp [;a. k] z(k), t }  = @[z(k), t ]  

for an arbitrary real constant vector a. 

3. Equations for the cumulants 

(2.14) 

The moments of the probability distribution of v(k) are de,..ied as the coefficients 
M(n) of the following Taylor expansion of the characteristic functional: 

where the factor 6(kl+ ... +k,) is required by the condition (2.14). Likewise, the 
cumulants are defined as the coefficients of the logarithmic Taylor expansion 

x S(kl+ ... +k,)ztl(kl) ... zls(k,)dkl ... dk,] . (3.2) 

Obviously, and C(*) are invariant under the simultaneous permutation of the 
suffixes (Z1, . . . , 2,) and the arguments (kl, . .. , k,) and, in accordance with (2.8) and 
(2.13), satisfy the relation 

(3.3) 

As may easily be seen from (2.10) and (3.1), the moments are related to the mean 
velocity products in the following manner: 

Likewise, it follows from (3.2) that 

Thus a cumulant of any order can be expressed in terms of the mean velocity products 
using relations (3.4) and (3.5). 
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The equations for the cumulants are obtained by substituting the expansion (3.2) 
into (2.11) and equating coefficients of the same powers of the z,(k)'s as follows: 

with k, + k, + . . . + kn = 0, where krn = and 2 means the sum over all permu- 
tations of (1,2, ..., n). 

Equations (3.6) for n = 2,3,  ... represent an infinite system of equations each 
relating the cumulant of nth order to those of lower orders and that of (n + 1)th order. 
It is the presence of the (n + 1)th order cumulant that makes this system of equations 
indeterminate since any finite subset of them curtailed at a certain order always 
involves one more unknown cumulant than the number of equations. An assumption 
usually introduced in this context to make the finite subset of equations determinate is 
simply to neglect the cumulant of highest, i.e. (n+ l)th, order, and this is generally 
called the zero-cumulant hypothesis. As may easily be seen from (3.4) and ( 3 4 ,  the 
cumulants of first, second and third order are identical to the mean velocity products 
of the corresponding order, so that the zero-cumulant hypothesis is meaningful at 
least for the fourth-order cumulant. 

The zero-fourth-order cumulant hypothesis, which was put forward by Proudman & 
Reid (1954) and Tatsumi (1955, 1957), is to neglect the terms G4) in the following pair 
of equations, which are equivalent to (3.6) for n = 2 and 3: 

[f , i l  I rk, k'l 

t1, .. .,nl 

(2 t+v (k2+k '3 )  a C$)(k,k'; t )  = i C Icaa,(k)~C$~q(k-h,k',h; t)dh (3.7) 

with k + k  = 0 and 

( i + v ( k z + k ' 2 + k " 2 )  C$L(k, k', k"; t) 

kq( 9 -k"; t ) )  

I 
[ & j ,  kl 

[k, k', k"1 
= i kpAiq(k)(~/C~]k,(k-h,k',k")h; t ) d h - C g i ( - k ' , k ;  t ) @ )  k" 

(3.8) 
with k + k' + k" = 0, where the summations are taken over all simultaneous permuta- 
tions of (i,j, k) and (k, k, k"). The pair of equations (3.7) and (3.8) with the terms U4) 
omitted gives a deterministic equation for Ct2) on elimination of U3), and for isotropic 
turbulence this equation is written in the form of an equation for the energy spectrum 
function E(k,  t ) .  A detailed discussion of the consequences of this equation and the 
nature of the basic hypothesis has already been made in 8 1. In  order to overcome the 
defects of the zero-fourth-order cumulant hypothesis the multiple-scale cumulant 
expansion is introduced in the next section. 



Curnulant expansion for isotropic turbulence 105 

4. Multiple-scale cumulant expansion 
The cumulant expansion (3.2) of the characteristic functional represents an expan- 

sion in ascending powers of the turbulent velocity since the cumulant C(@ is related to 
the mean velocity products of the same order through relations (3.4) and (3.5). In  
non-dimensional form it can be written as a power series in the Reynolds number based 
on the turbulent velocity. Thus there is good reason to believe that the cumulant 
expansion may be useful for dealing with weak turbulence at small Reynolds numbers 
but may be inadequate for strong turbulence a t  large Reynolds numbers. The failure of 
the zero-fourth-order cumulant approximation seems to confirm this belief. 

It should be noted, however, that the cumulant expansion itself should not neces- 
sarily be taken as an expansion in ascending powers of the Reynolds number. In  fact, 
it will be shown below that the cumulant expansion can be transformed into an 
asymptotic expansion for extremely large Reynolds numbers if an appropriate ordering 
of the variables is made. 

The first two cumulant equations (3.7) and (3.8) may be written symbolically as 

(a /& + vk2) 02) = k l  U 3 ) d h ,  

(a/at + vk2) C(3) = k J  C(*)dh + kU2) 02), 
(4.1) 

(4.2) 
where, for convenience, all the variables are regarded as non-dimensional and the 
viscosity v as a non-dimensional parameter equivalent to the reciprocal of the Rey- 
nolds number. 

The physical arguments can be made more conveniently in terms of the averaged 
cumulants, which are defined as follows: 

(4.3) 1 
C(2) = 

C(3) = J / 0 3 ) ( k ,  k )  k 2 k ' 2 d c d d ,  

C(4) = /J/ C(4)( k, k k") k2k'2k"2 d c  do' dg", 

C@)( k) k2 d r ,  
- 
- 

where the d s  denote the solid angles in wavenumber space. 
In  isotropic turbulence C(2) and I?(~)  are expressed as 

C$:)(k, - k ;  t )  = $(k,  t )  A,,(k), (4.4) 

C$'(k, t )  = %k2$(k, 3 t )  Sir. (4.5) 
- 

Using (2.5), (2.4) and (3.5), the energy of the turbulence per unit mass is expressed as 

where E ( k ,  t )  = 4nk2$(k, t )  = @$;)(k, t ) .  (4.7) 

The scalar function $(k, t )  is called the energy spectrum density and E ( k ,  t )  the energy 
spectrum function. 

In  terms of these averaged cumulants the symbolic equations (4.1) and (4.2) are 

(4.8) 
rewritten as 

(4.9) 

(a/at + vk2) E(2) = k j  03 )dh ,  

(a/at  + vk2) 0 3 )  = k I C'(4)dh + kC@)C@). 
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Now we proceed to the estimation of the order of magnitude of the variables. At 
an initial instant the turbulent Auid has a finite amount of energy per unit mass b(0).  
At this time the intensity @) of the energy spectrum and the energy-containing wave- 
numbers, for which 8(2) has non-zero values, are both assumed to be of the order of unity. 

The statistical state of turbulence changes in time. At large Reynolds numbers it 
soon assumes an asymptotic state in which postulate (1.4) or (1.5) is satisfied. In  such 
a state, as described in $1,  the second-order cumulant has a length scale of order 
v4 and the higher-order cumulants have smaller length scales. Then, if we introduce 
a set of multiple wavenumber scales 

k,  = v h k ,  n = 1,2, ..., (4.10) 

it is natural to assume that the cumulants depend on the wavenumber scales (4.10) 
as follows: 

(4.11) I C(')(k) = C(')(k1), 
C(')(k) = O3)(kl,  k2),  
c(4)(k)  = C(4)(k1, k,, k3), etc. 

The variation of the cumulants in time is likewise expressed in terms of the multiple 

t ,  = v-V, n = 0,  1,2, ... . (4.12) 
time scales 

Then the time derivative is written as 

a -  a _ -  - t; v-n-. 
at n=O at, 

(4.13) 

The energy spectrum 0 2 )  changes in time a t  a finite rate since the rate of energy 
dissipation is finite according to postulate (1.4). The higher-order cumulants, on the 
other hand, are supposed to change more rapidly since they are subject to larger 
viscous dissipation than @). Thus, in accordance with the form of the wavenumber 
dependence of the cumulants given by (4.1 l),  the cumulants are assumed to depend 
upon the multiple time scales as follows: 

(4.14) 

Concerning the order of magnitude of the cumulants, it may be obvious that the 
energy spectrum C(2) is of order v8 since a finite amount of energy is spread over 
a wavenumber range of order v-4. The magnitude of the higher-order cumulants is 
supposed to be smaller than V B  since they have an even larger extent than c(2). Good 
support for this estimation is provided by experimental studies referred to in $1, 
which show that the velocity correlations of fourth and higher order are related very 
closely to the second- and third-order ones by the zero-cumulant relations and that 
the deviation from these relations is confined to a very small region of space and is 
very small in magnitude. There is no systematic rule for assigning an order of magni- 
tude to each of the higher-order cumulants but their magnitudes are so determined 
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that they are balanced in the cumulant equations successively. Thus the first three 
cumulants are expressed as 

(4.15) I O2)(k1;  to) = d[Ch2)+~C12)+ ...I, 
E(3)(k1,k2; to , t l )  = d[CL3)+vC$3)+ . . . I ,  
Cc4)(k,, k,, k,; to, t,, t,) = v% [Ch4) + vCi4) + . . .]. - 

The cumulant equations involve the degenerate cumulants 
- 

[""dh = @), n 3 3, (4.16) 

where I?% has the same number of independent wavenumber arguments as It 
is natural to assume that z(n) has the same dependence on the wavenumber and time 
scales as C(n-1) and a magnitude between those of I?(n) and @-l). Thus 

On substitution of the expansions (4.13) and (4.15)-(4.17) into (4.8) and (4.9) we 
obtain the equations governing the coefficient functions of (4.15) and (4.17). To order 
v4 we have 

[a/at, + kf] I?h2)(kl; to) = k, [ Ch3)(k1, k,; to, t,) dh, (4.18) 

[ a / a t ,  + k;] Ch3)(k1, k,; to, t,)  = k,I?h2)(kl; to)  Ch"(k,; to ) .  (4.19) 

It should be noted that the fourth-order cumulant C(4), being a higher-order term, does 
not appear in (4.19), so that the multiple-scale expansion acts as a closure assumption 
in this context. 

Since the right-hand side of (4.19) is independent oft,, it may be integrated at once 
to give 

Ch3) = k;,[l -exp ( - k i t , ) ]  klch2)(kl;  to) Cb2)(k,; to)  

= kT2 [I - exp ( -  k!to)] k, ch2)(kl; to) ch2)(kl; to),  (4.20) 

where the initial condition 
(4.21) 

has been assumed. 
Now the pair of equations (4.18) and (4.20) gives, on elimination of 6i3), a closed 

dynamical equation for Ch2). If we rewrite the symbolic equations (4.18) and (4.20) in 
terms of the original arguments and restore their tensorial details according to (3.7) 
and (3.8), we obtain the following equations for the energy spectrum #(k,  t ) :  

C$)k(k, k', k"; 0 )  = 0 

[a /a t+  2vk2] $(k, t )  = $(k, t ) ,  

1 1 - exp [ - v(k2 + kr2 + k",) t ]  
v( k2 + k'2 + k",) 

(4.22) 

$(k, t )  = 4nJomdk'S_1 

x [$(k',t)-#(k,t)J#(k",t)kk'3(kk'/k"2+~) (1  -p2)dp, (4.23) 

where k 2  = k2+ k'2+ 2pkk'. The initial condition (4.21) for Ci.;L is written as 

$(k,O) = 0 .  (4.24) 
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Equations (4.22) and (4.23) constitute the dynamical equations for the energy 
spectrum based upon the multiple-scale cumulant expansion. The usual energy 
spectrum function E(k,  t )  is related to $(k, t )  through (4.7) and the energy transfer 
function T(k, t )  is expressed similarly as 

T(k, t )  = 477k29(k, t). (4.25) 

5. Numerical calculation 
For convenience in numerical work all variables are made non-dimensional with 

respect to a representative wavenumber k, and a representative value of the energy 
spectrum Eo as follows: 

wavenumber, K = k/k,; 
time, 7 = E i k i t ;  

Reynolds number, R = Ei/(vk$); 

and the same symbols are used for the non-dimensional forms 

(5.1) 

of q5 and I). Then on 
elimination of 4, (4.21) and (4.22) are expressed in non-dimensional form as 

X [$(K’, 7) - $ ( K ,  T ) ]  $ ( K ” ,  7 )  KKt3(KK’/KN2 +/%) (1  -,!A2) dp, (5.2) 

where Kn2 = K2 + K f 2  + 2pKK‘ .  

For the initial condition for (5.2) the following two cases are considered: 

(I) 

(11) 

$ ( K ,  0) = (4n)-l exp ( - K Z ) ,  

$ (K ,  0) = (4n)-l K2exp ( - K ~ ) .  

Cases I and 11, which have finite and vanishing energy density a t  zero wavenumber 
respectively, represent two typical large-scale structures of turbulence, whose signi- 
ficance will be discussed later. The initial conditions (5.3) and (5.4) may be expressed 
in terms of the energy spectrum function E(k, t )  as 

Likewise, the initial condition (4.23) for 9 is written for the energy transfer function 
T(k,t) as 

for both cases. 
The integrals on the right-hand side of (5.2) are calculated numerically by using 

appropriate sum rules a t  discrete values of K’ and p and terminating the infinite 
integral with respect to K’ a t  a sufficiently large value of K’. At very large Reynolds 
numbers the integrand changes rapidly at small K‘ and does not vanish even a t  large 
K’.  In  order to evaluate such an integral accurately and efficiently we employ a non- 
uniform mesh for K‘ whose size is an increasing function of K‘. The following variables 
are introduced for this purpose: 

T(k,O) = 0 (5.7) 

5 = b g ( l O K ) ,  7 = 0.01R7, $(<,q) = 0 * 1 $ ( K , 7 ) .  ( 5 4  
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In terms of these new variables (5 .2 )  becomes 

The infinite integral with respect to 5' is terminated at E' = B + log 2 (K' = 0.263 and 
calculated by the trapezoidal rule in the region -a < E' < 0 (0 < K' 6 0.1)  and by 
Simpson's rule in the region 0 < 5' < B+log2 (0.1 < K' < 0.2e") with a mesh size 
A(' = log 1.2 = 0.18232. The following values have been chosen for 8: 

30 for R = 5, 10, 20, 100,' 

45 for R = 800. I 40 for R =  200,400, (5 .10)  

These values of B have been confirmed to be sufficiently large by numerical results. The 
integration with respect to ,u is carried out by Simpson's rule with a mesh size Ap = 0.1. 
The derivative 8/87 is replaced by the forward-difference quotient with a mesh size 

In this way (5.9) is solved numerically for the initial conditions (5.3) and (5.4) and 
the Reynolds numbers listed in (5 .10) .  Thus the energy spectrum function E(k, t )  is 
obtained as a function of the wavenumber k and time t .  

Various statistical quantities characterizing turbulence can be derived from nu- 
merical results for the energy spectrum, but only representative ones will be presented 
here. 

The kinetic energy of turbulence per unit mass is given by (4 .6) .  This quantity 
mostly reflects the shape of the energy spectrum E(k, t )  in the energy-containing range 
of the wavenumber. 

The skewness of the distribution of the velocity derivative is defined and related to 
the energy spectrum and the energy transfer function as follows: 

A7 = O.OOO2R (AT = 0.02).  

(5.11) 
[ J  0 k2E(k,t)dk]' 

where u1 is the velocity component along the co-ordinate axis 2,. In  contrast to the 
energy €( t ) ,  the skewness X ( t )  is mainly determined by the forms of E(k , t )  and 
T(k ,  t )  in the higher wavenumber range, so that it reflects the shape of the energy spec- 
trum E(E, t )  beyond the energy-containing range of the wavenumbers. 

Lastly, the microscale of the turbulence h is defined and expressed in terms of the 

(5.12) 
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Sometimes, especially for convenience in comparison with experimental results, 
non-dimensional variables are defined in terms of h(t)  and the root-mean-square 
velocity u(t) ,  where 

The relevant Reynolds number is defined as 
P m  

(5.13) 

(5.14) 

Incidentally it is interesting to note that the initial 
number R,(O) corresponding to initial conditions (5 .3 )  
former Reynolds number R as follows: 

(I) R = 

(11) R = 1*0623RA(O). 

values of the new Reynolds 
and (5.4) are related to the 

(5.15) 

Thus the two Reynolds numbers R and R,(O) are nearly identical in either case. 

6. Energy spectrum 
Of all the numerical data concerning the evolution of the energy spectrum function 

E(k, t )  and the energy transfer function T ( k ,  t )  those for R = 20 and 800 are chosen as 
representative data and shown graphically in figures 1 (a)-(d).f For all Reynolds 
numbers examined the energy spectrum E(k, t )  is found to be positive definite at  all 
times. 

It is not evident in figures for R = 20 but may clearly be seen from figures for large 
Reynolds numbers such as R = 800 that there is an abrupt change in the behaviour 
of E(k, t )  and T ( k , t )  in time at about t = 4 for case I and at about t = 3 for case 11. 
In  the period preceding this change both functions undergo rapid deformation from 
their initial forms into similar forms, which are nearly identical for cases I and I1 but 
apparently depend upon R. In  the later period, on the other hand, they change slowly 
and similarly in time. The presence of these two periods may also be observed in other 
statistical variables which will be described later on, and therefore this seems to be 
a characteristic feature of the evolution of decaying turbulence at large Reynolds 
numbers. For later convenience the above two periods are referred to as the initial and 
similarity periods respectively. $ 

The form of the spectrum E(k, t ) ,  especially its structure at  higher wavenumbers, 
is displayed more clearly on a logarithmic scale as shown in figures 2(a)-(d) .  The 
distinction between the initial and similarity periods is more evident in these figures. 

There are some remarkable features in the evolution of the spectrum shown in the 
above figures. First, the positive slopes of E(k , t )  at very low wavenumbers, which are 

t Statistical functions including E(k, t) and T ( k ,  t) have been calculated for a11 combinations 
of cmes I and I1 and R = 5,  10, 20, 100, 200, 400, 800. The figures which are not displayed in 
this paper are available on request from the first author (T. T.). 

2 In common usage the initial period of decay includes both the initial and the similarity 
period defined above. 
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2 and 4 for cases I and I1 respectively according to (5 .5)  and (5.6), are almost invariant 
in time. Thus the spectrum in the very low wavenumber range is entirely fixed by 
the initial condition, reflecting the well-known permanence of the large-scale com- 
ponents of turbulence. Second, in the similarity period, the higher wavenumber part 
of the spectrum is not influenced appreciably by the difference between cases I and I1 
at very low wavenumbers but has a nearly identical form for both cases. The existence 
of such a universality in the spectrum in the higher wavenumber range clearly suggests 
the possibility of constructing a theory of a universal spectrum for decaying turbu- 
lence using the present results. Such a theory will be dealt with in $5 7 and 8. 

The more detailed structure of the spectrum in the similarity period is dependent 
upon the Reynolds number, so that it will be described below for small and large 
Reynolds numbers in turn. 

At small Reynolds numbers such as R = 20 the spectrum preserves its exponential 
form throughout its variation in time. A closer inspection of the spectrum reveals that 
its dependence on the wavenumber is not precisely that of exp ( - 2vk2t) as would be 
expected from the linearized form of (5.2) and the initial conditions (5.5) and (5.6) but 
is more closely represented by 

as k +- co, where u is a constant dependent upon v and t. This result shows that even at  
small Reynolds numbers the spectrum does not tend to the purely viscous spectrum 
as the wavenumber increases indefinitely. This problem will be discussed later, in 5 8.1. 

At large Reynolds numbers such as R = 200-800 the spectrum in the universal 
wavenumber range is composed of three parts having different functional forms. 

(i) In  the lowest subrange of the universal wavenumber range, the spectrum is 
expressed as 

E(k, t )  21 exp (uklS5) (6.1) 

E(k,  t) a k-8, (6.2) 

which hasexactly the same power as Kolmogorov’s ( 194 1 a) inertial-subrangespectrum. 
The part of the subrange in which (6.2) is valid increases indefinitely with Reynolds 
number. This result is in accordance with Kolmogorov’s second hypothesis, which 
assumes the existence of the inertial subrange at  very large Reynolds numbers. 

The -$ power spectrum has been observed by many experimentalists in various 
turbulent flows with extremely large Reynolds numbers either in nature or in the 
laboratory. Grant, Stewart & Moilliet (1962) and Grant & Moilliet (1962) found this 
spectrum in tidal streams, Wyngaard & Pao (1972) found it in atmospheric winds, 
Gibson (1962, 1963) found it in a jet and Gibson & Schwarz (1963), Kistler & Vrebalo- 
vich (1961, 1966) and Schedvin, Stegen & Gibson (1974) found it in grid-generated 
turbulence. Also, many other measurements are referred to in the monograph by 
Monin & Yaglom (1975). The present result will be compared with these measurements 
in $9.2. 

(ii) Next to the previous subrange, there exists a subrange in which the spectrum 
may be expressed as 

As the Reynolds number increases, this subrange is shifted to higher wavenumbers 
without changing its width on a logarithmic scale but becomes wider on a linear 
scale. 

E(k,  t )  a k-l. (6.3) 
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FIGURE 1 (a). For legend see p. 115. 

It may be interesting to note that the spectrum (6.3) is identical to that of turbulence 
which is composed of a random collection of extremely fine vortex filaments of any 
shape. It is a matter of elementary calculus to show that, irrespective of the spatial 
dimension, the spectrum functions E(k,  t )  for random collections of line vortices and 
plane vortices are proportional to k-1 and k-2 respectively. Thus the existence of the 
spectrum (6.3) indicates that the smallest structure of turbulence a t  large Reynolds 
numbers consists mostly of line vortices. 

So far no experimental evidence has been obtained for the existence of the k-I sub- 
range adjacent to the k-% subrange. It should be noted, however, that experimental 
results are mostly presented in the form of the one-dimensional spectrum, P(k ,  t )  say, 
which is related to the three-dimensional spectrum E(k,  t )  by 

F(k,  t )  = 2 Ikw (1 - g) $ E(k', t )  dk'. 
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FIGURE 1 (b). For legend see p. 115. 

The k-l subrange in E(k, t )  is smoothed out through this transformation and there 
remains only a slightly more gentle slope next to  the k-4 subrange in F(k,  t ) .  Thus it is 
rather difficult to  tell whether the k-1 subrange in the three-dimensional spectrum is 
compatible with the measured one-dimensional spectra or not, and a more precise 
comparison of theoretical and experimental spectra seems to  be needed before a definite 
conclusion can be obtained. 

Incidentally, i t  may be interesting to  note that a combined k-P and k-l spectrum 
was proposed by Batchelor (1959) for the spectrum of temperature fluctuations in 
turbulence a t  large Prandtl numbers and confirmed experimentally by the measure- 
ments of Grant et a2. (1968). 

(iii) At still higher wavenumbers, the spectrum E(k, t )  takes the exponential form 
(6.1). Thus, according to  the present theory, the asymptotic form of the spectrum 
for very high wavenumbers is given by (6.1) irrespective of the Reynolds number. 
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FIGURE 1 (c). For legend see facing page. 

It is rather difficult to deduce a definite asymptotic form from measured spectra, 
which generally show erratic behaviour due to increasing noise at high wavenumbers. 
A theoretical form of the spectrum at very high wavenumbers was proposed by Pao 
(1965, 1968). Assuming that the rate of energy transfer across a wavenumber k is 
dependent on the energy dissipation 8 and the wavenumber k,  he obtained the follow- 
ing spectrum through dimensional reasoning: 

for k 9 k,, where K is Kolmogorov’s constant and is defined in (8.11) below. It is 
interesting to note that the wavenumber dependence k* of the exponential factor is 
fairly close to the kl.5 of (6.1). Pao compared the theoretical form (6.5) with experi- 
mental spectra with various values for K .  General agreement was attained with 
K = 1.7 but the comparison is not conclusive owing to the scatter in the experimental 
data. 

E(k)  = K d k - 8  exp [ - #Kve-*k8] (6 .5)  
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FIUURE 1. The energy spectrum function E(k, t )  and the energy transfer function T(k,  t ) .  In  all 
the figures in this paper the numbers by the curves denote the non-dimensional time 7 = Et k! t .  
(a) Case I, R = 20. ( b )  Case 11, R = 20. ( c )  Case I, R = 800. ( d )  Case TI, R = 800. 

7. Similarity laws for energy spectrum 
If the energy spectrum function E ( k , t )  satisfies a similarity law with respect to 

Reynolds number and time within a certain wavenumber range, it must be expressed 
in the following non-dimensional form in this wavenumber range: 

E(k, t ) /E,  = R-OL7-@F(~/(RY~6)), (7.1) 

where the exponents a, p, y and S are constants and F is a non-dimensional function. 
The similarity is confirmed geometrically by making the spectral curves in the 

logarithmic representation coincide with each other over a wavenumber range 
through suitable parallel displacements. I n  practice, the best coincidence is attained 
by minimizing the mean-square distance between the curves. Then the values of the 
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exponents a and y are obtained from the sizes of the vertical and horizontal displace- 
ments respectively of the curves for different Reynolds numbers, while the values of 
/3 and 6 are determined from the corresponding displacements of the curves for dif- 
ferent times. The function F is obtained from the mean of the superimposed curves. 

As mentioned before, there is no single similarity law which is valid at all wave- 
numbers, but there do exist two different similarity laws satisfied in the energy- 
containing and the universal ranges separately. 
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7.1. Energy-containing range 
Pirst, the curves for a fixed Reynolds number and different times (7 = 0, 1,2, . . . ,8) are 
brought into coincidence with each other over the wavenumber range 0.2 6 K 6 2.0, 
which roughly corresponds to the energy-containing range. The results for R = 800 
are shown in figures 3 (a)  and ( b )  for cases I and I1 respectively; here the curves for 
7 = 8 have been fixed as reference curves. The coincidence appears to be perfect for 
the curves belonging to the similarity period, i.e. 7 2 4 for case I and 7 2 3 for case 11. 
Next, the resulting curves for different Reynolds numbers (R = 200, 400 and 800) 
are made to coincide with each other over the same wavenumber range. The numerical 
values of the exponents thus obtained for the energy-containing range, which are 
denoted by the suffix 1, are listed in table 1.  Errors in the numerical values are found to 
be at  most a few per cent. The most remarkable of the above results is that a, k 0 
and y, = 0 or, in other words, that the structure of the large-scale components of 
turbulence, which contain essentially all the turbulent energy, is independent of the 
Reynolds number so long as it is very large. The shape of the mean curve in the 
energy-containing range, or the function F = F,, say, is different for cases I and 11, 
reflecting the difference in the initial spectra at very low wavenumbers, but its shape 
beyond the maximum is almost identical for the two cases. 

Once the similarity of the energy-containing spectrum with respect to time has been 
established, the law of decay of the turbulent energy may be derived immediately. 
Substitution from (7.1), with the suffix 1,  into (4.6) gives 

&(t)  = ~!t~k~R-~17-81 Fl(K/(Ry17'1)) d K  j O r n  
= EokoR-a1+Y17-81+dl F,(s) ds. (7.2) 

/ow 

By making use of the numerical values in table 1, we obtain the following laws for the 
decay of energy: 

(7.3) 

(11) €( t )  cc R0017-1.39. (7.4) 

Obviously the energy € ( t )  does not depend appreciably on the Reynolds number R 
for either case. 

It is an immediate consequence of (7.3) and (7.4) that the energy dissipation rate 

d 
dt 

E(t) = - - &(t) = - (7.5) 

is independent of the Reynolds number, and thus the viscosity v. This conclusion is in 
accordance with postulate (1.4) or (1.5) and thus proves the self-consistency of the 
present scheme of approximation. 
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FIGURE 3. The inviscid similarity of the energy spectrum function E(k, 
for R = 800. (a) Cme I. ( b )  Case 11. 
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Case I Case I1 
(------A-.----, -7 

Numerical Analytical Numerical Analytical 

0.00 0.0 0.00 0-0 

0.01 0.0 0.01 0.0 
8 -  

011 
P I  0.80 + = 0.8 1.09 , - 1-14 
Y1 

-2 - 81 - 0.40 -Q = -0.4 - 0.30 , - -0.29 

TABLE 1. Similarity exponents for the energy-containing range. 

7.2. Universal range 

The similarity of the spectrum in the universal range is determined by the same 
method, i.e. by requiring coincidence of the curves in the wavenumber range 
3.0 < K < 30, which is roughly the common part of the universal range for the 
Reynolds numbers examined. The results are shown in figures 4 (a )  and ( b )  for cases I 
and I1 respectively; here the curves1for R = 800 and T = 8 have been fixed as the 
reference curves. The coincidence of the curves is very good, and unlike that for 
the energy-containing range, the shape of the mean curve for the universal range, or 
the function F = F2, say, is nearly identical for cases I and 11. 

The numerical values of the exponents for the universal range, which are denoted 
by the suffix 2, are listed in table 2, where again errors are within a few per cent. It may 
be noted that the values of a2 and y2, representing the dependence upon Reynolds 
number, are the same for cases I and 11, whereas those of p2 and a,, representing the 
time dependence, are slightly different for the two cases, possibly owing to the different 
rates of energy supply from the energy-containing range. 

Now that numerical values of the exponents for the universal range have been 
determined, the similarity form of the energy spectrum E ( k ,  t )  in each subrange of the 
universal range can be derived from the general formula (7.1). 

(i) -+power subrange. Assuming the function P2 in (7.1) to be of the form (6.2) and 
substituting the numerical values of the exponents from table 2, we obtain the follow- 
ing similarity forms of the spectrum in the -8 power subrange: 

(I) E(k,  t ) /Eo  = 1-2R-’J’’J+1’44~-*, ( 7 4  

(11) E(k,  t ) /Eo  = 1 .0R-0’02~-1 ‘57~-~ ,  (7.7) 

where the coefficients have been determined from the mean curves in figures 4(a )  
and (b) .  It is obvious from the above result that in this subrange the spectrum E(k,  t )  
is independent of the Reynolds number R, and thus the viscosity v. So Kolmogorov’s 
second hypothesis, which assumes independence of the spectrum from the viscosity, 
is actually satisfied here, so that the spectra (7.6) and (7.7) are nothing but Kolmo- 
gorov’s inertial-subrange spectrum. 

(ii) - 1 power subrange. The similarity form of the spectrum in the - 1 power 
subrange is obtained in the same way as that in (i) as follows: 

(I) E(k,  t ) /Eo  = 4.8R-0’51~-1’09~-1, (7.8) 

(11) E(k ,  t ) /Eo  = 4-OR-0”0~-1”*~-1. (7.9) 

These spectra are dependent on both the Reynolds number and time. 
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FIGURE 4. The universal similarity of the energy spectrum function E(k, t ) .  
(a )  Case I. (b )  Case 11. 
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~~~ ~~ ~~ - 

Case I case I1 

Numerical Analytical Numerical Analytical 

1-22 t = 1.25 1.22 f = 1.25 
LZ = Ba 0.56 5 = 0.55 0.59 p B  0.61 

0.71 2 = 0.75 0.72 H = 0.75 
-3.1 - Ya 

4 - 0.53 -5 = -0.55 - 0.59 $ 8  - -0.61 

A r h s r \ 

TABLE 2. Similarity exponents for the universal range. 

(iii) Exponential subrange. The functional form (6.1) of the spectrum at very high 
wavenumbers is clearly seen from the plots of log E(k, t) vs. kla6 shown in figures 5 (a)  
and ( b ) .  All curves are straight with good accuracy for K higher than about 15. 

The similarity form of the spectrum in the exponential subrange is obtained in the 
same way as before and may be expressed as follows: 

(I) log (E(k, t) /Eo) N - 3.7R-1.077080~1*6, (7.10) 

(11) log (E(k, t ) /Eo)  N - 3.6R-1’08~089~1’6 (7.11) 
for K+CO. 

8. Inviscid similarity and Kolmogorov’s similarity 
It has been shown in preceding sections that the energy spectrum E(k, t )  satisfies 

different similarity laws with respect to Reynolds number and time in various wave- 
number ranges and subranges. The differences between these similarity laws are 
accounted for in $8.1 by comparing the magnitude of the nonlinear energy transfer 
with that of the viscous dissipation of energy. Next, it is shown in $8.2 that the law 
of energy decay can be derived from the inviscid similarity law in the energy-containing 
range and the inertial subrange combined with Kolmogorov’s similarity law in the 
universal range. 

8.1. Energy transfer and energy dissipation 
The spectrum E(k,  t )  consists at large Reynolds numbers of several component spectra 
which have their own similar forms and wavenumber ranges of validity. The charac- 
teristics of these component spectra are most clearly exhibited in figures which show 
the energy spectrum function E(k, t ) ,  the energy transfer function T(k, t )  and the 
energy dissipation function 

together. Some examples of such figures are given in figures 6 (a)-(d), where the arcsin- 
hyperbolic scale has been adopted in order to give an even appearance to the curves 
by suppressing larger variations along either axis. 

(i) It may be noticed in the figures for large Reynolds numbers that throughout 
the energy-containing range and the inertial ( -5 power) subrange the energy dissipa- 
tion is much smaller in magnitude than the energy transfer: 

D(k, t )  = 2vk2E(k,t) (8.1) 

w, t )  < 1W’ t ) l .  (8.2) 

It is indeed this condition that makes the spectra in the energy-containing range and 
the inertial subrange essentially independent of the viscosity. As already seen in 0 7, 
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FIGURE 6. The energy spectrum function, the energy dissipation function and the energy transfer 
function. -, E(k,  t ) /Eo;  ---, 2vkaE(k, t)/(E,,ko)*; -- , T(k ,  t ) / (Eoko)%.  All curves are plotted 
on an arcsin-hyperbolic scrtlc. (a) Case I, R = 20. (b )  Case 11, R = 20. ( c )  Case I, R = 800. 
( d )  Case 11, R = 800. 
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the inviscid similarity in the energy-containing range is consistent with Kolmogorov’s 
first similarity hypothesis while that in the inertial subrange agrees with his second 
similarity hypothesis. Therefore Kolmogorov’s similarity law based upon these two 
hypotheses is satisfied by the present numerical results for the decaying turbulence. 
A treatment of the decay process of turbulence using Kolmogorov’s similarity law 
will be made in $8.2. 

It should be noted that condition (8.2) is somewhat different from the usual con- 
dition for Kolmogorov’s inertial-subrange spectrum. This spectrum was originally 
derived for locally isotropic turbulence, in which the universal-range spectrum is 
assumed to be stationary, i.e. aE(k, t ) /at  2: 0.  Then the inertial subrange exists under 
the condition that both D(k, t )  and T(k, t )  me nearly zero. In  the present case, on the 
other hand, T(k, t )  is finite, being balanced by a non-zero aE(k, t ) /a t .  Thus condition 
(8.2) shows that Kolmogorov’s similarity law holds under a weaker condition than the 
original one. 

Recently, the energy transfer function T(k)  was measured by Helland, Van Atta & 
Stegen (1977) a t  large Reynolds numbers such that the inertial-subrange spectrum 
E(k)cc k-5 exists over one or two decades of the wavenumber. On comparing their 
results for the two functions E ( k )  and T(k) ,  they found that T(k)  takes finite negative 
values over the inertial subrange and concluded that T(k)  = 0 may be a sufficient 
condition for the existence of the inertial-subrange spectrum but that the converse is 
apparently not valid. This conclusion is in accordance with our finding stated above. 

(ii) Next, it may be seen in the figures for large Reynolds numbers that the k-l 
spectrum always occurs in the neighbourhood of the wavenumber a t  which the energy 
transfer function T(k,  t )  changes its sign, or in other words, in the range where 

IT(k, t ) (  < D(k, t ) .  (8.3) 

This is in perfect accord with the fact that the k-1 spectrum has been derived as an 
asymptotic solution of the equation 

T(k, t )  = 0 (8.4) 

for very large Reynolds numbers and times (Tatsumi 1960). Hence, according to the 
present theory, the k-1 spectrum must exist since the energy transfer function T(k, t ) ,  
which satisfies the condition lom T(k, t ) d k  = 0,  

must change sign somewhere. It should be remembered, however, that this conclusion 
is dependent upon the particular form of T(k, t )  in the present approximation given 
by (4.23) and (4.25). Since the wavenumber range for the k-l spectrum seems to belong 
to the k, range, it is quite possible that the above conclusion would be modified by 
taking into account higher-order approximations. 

(iii) Lastly, it is apparent from all the figures that the exponential spectrum of the 
form (6.1) occurs in the wavenumber range in which the energy transfer is nearly 
balanced by the energy dissipation: 

T(k, t )  -N D(k, t ) .  (8.5) 

This situation is substantially different from that for weak turbulence, where the 
nonlinear transfer of energy is negligibly small, so that the energy dissipation is 
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balanced by the attenuation of the spectrum. The spectral form corresponding to such 
weak turbulence is the well-known viscous spectrum 

E(k, t )  cc exp ( - 2vk2t), (8.6) 

which was shown to appear in the final period of decay by Batchelor & Townsend 
(1948). The present result for turbulence of not very small Reynolds number shows 
that a spectrum of the type (8.6) does not occur even in the highest wavenumber 
range, where the energy density is quite low. Thus the asymptotic behaviour of 
turbulence a t  high wavenumbers should be accounted for by condition (8.5) instead of 
the linearized theory of weak turbulence. 

8.2. Similarity law of decay process 
I n  this subsection we shall develop a theory of the decay process of turbulence a t  
large Reynolds numbers by using the characteristic features of the present numerical 
results and Kolmogorov’s similarity law for the universal wavenumber range. The 
similarity law for the spectrum E(k, t )  in the energy-containing range and the inertial 
subrange may be summarized as follows. 

(i) Throughout the energy-containing range and the inertial subrange the spectrum 
takes an inviscid similar form 

E(k,  t)/Eo = ‘T-11F1(K/T81). (8.7) 

E(k, t)/E, = A@, (8.8) 

(ii) In  the lowest wavenumber part of the energy-containing range the spectrum 
(8.7) tends to 

where A ,  and a are non-dimensional constants. 
(iii) In  the inertial subrange the spectrum (8.7) takes the form 

E(k, t) /Eo = &-P~+%’~IC-%, (8.9) 

where B is a non-dimensional constant. 
It was shown in § 8.1 that Kolmogorov’s similarity law is applicable to the universal 

range of the decaying turbulence under consideration. Thus the spectrum in this 
range is expressed in Kolmogorov’s similar form as 

E(k ,  t )  = &(t)f G ( k / ( 4 t ) / v 3 ) f ) ,  (8.10) 

where the energy dissipation c(t) is in this context a function of time and G is a non- 
dimensional function. In  the inertial subrange the spectrum (8.10) takes the form 

E(k,  t )  = K € ( t ) W ,  (8.11) 

where K is a non-dimensional constant. Obviously, (8.11) is identical with the other 
expression for the inertial-subrange spectrum (8.9). 

If the energy of the turbulence &(t) decays in time according to the relation 

&(t)  cc t-*, (8.12) 

b being a constant, then the energy dissipation s( t )  changes in time according to 

E(t) = - d&(t)/dt cc t-(”+’). (8.13) 
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Now, if we suppose that the extensions of the lines given by (8.8) and (8.11) on a 
logarithmic graph intersect a t  the wavenumber k, and denote E(ks, t )  by E,, then 

E, = Auk: = Ke(t)ak,-*. 
Hence, in view of (8.13), 

(8.14) 

Since the intersection point is completely determined by the spectrum (8.7), the 
variation of its abscissa and ordinate in time must obey the same similarity law as (8.7). 
Thus, comparing (8.7) and (8.14), we obtain 

= 2a(b + 1)/(3a+ 5), 6, = - 2(b + 1)/(3a+ 5). (8.15) 

Substitution from (8.15) into (8.7) yields 

Comparison of (8.16) with (8.12) gives 

and hence, from (8.15), 
b = 2(a + l)/(a + 3), 

= 2a/(a + 3), 61 = - 2/(a + 3). 

(8.17) 

(8.18) 

The values of p1 and 6, thus obtained for cases I (a = 2) and I1 (a = 4) are given in 
table 1 together with the values a, = y, = 0 already assumed in (8.7). The agreement 
of these values with those from direct numerical calculation seems perfect, and this 
indicates that the similarity law (8.7) is satisfied by our numerical solutions with 
good accuracy. 

The general law of the energy decay for an arbitrary a is obtained from (8.12) and 
(8.17) as 

so that, from (8.13), 

For the special cases I and 11, (8.19) gives 

&(t)  0~ t-2(a+l)/(a+3), (8.19) 

e ( t )  cc t-(3a+5)/(a+3)* (8.20) 

(I) &(t)  cc t+ = t--1.2, (8.21) 

(11) &(t)  cc t-9 = t-1.43. (8.22) 

These results are again in agreement with (7.3) and (7.4) respectively. 
The energy decay law (8.22) was first derived by Kolmogorov (1941 b )  from assump- 

tions essentially equivalent to (8.7), (8.8) and (8.11) and re-derived by Comte-Bellot & 
Corrsin (1966) through a procedure similar to the present one but using a two-range 
model of the spectrum consisting of (8.8) and (8.11). It should be emphasized in this 
connexion that the existence of the inviscid similarity (8.7) is vital to deriving the 
energy decay law. Such an overall similarity is of a quite different nature from Kolmo- 
gorov’s (1941a) similarity for the universal range and was actually introduced by 
Kolmogorov as an independent assumption originally due to von K&rm&n & Howarth 
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(1938). Comte-Bellot & Corrsin avoided assumption of such a similarity by taking 
a special two-range model of the spectrum, but nevertheless it must be proved that 
there exists a spectrum connecting smoothly these two ranges and satisfying an overall 
similarity before their result may be taken to be realistic. As we have seen in 0 7, such 
a similar spectrum covering the energy-containing range and the inertial subrange has 
actually been provided by the present numerical results and this gives strong support 
to the validity of the energy decay law (8.19) with (8.21) and (8.22). 

The constant A, is related to the so-called Loitsiansky integral 

(8.23) 

where u(t) is the root-mean-square velocity and f ( r ,  t)  is the longitudinal correlation 
function. It was shown by Proudman & Reid (1954) for turbulence with zero fourth- 
order cumulants that A ,  is not invariant, and the same result was obtained by 
Batchelor & Proudman (1956) for general homogeneous turbulence. Thus the above 
derivation of the law (8.22) based on the invariance of A,  seems doubtful. Nevertheless, 
the deviation from invariance is found to be very small in the numerical results of the 
present theory as may be seen from the behaviour of the case I1 spectra at  very low 
wavenumbers which are shown in figures 2(b) and (d) .  Thus the energy decay law 
(8.22) is in fact valid with sufficient accuracy. 

On the other hand, it was found by Birkhoff (1954) that the coefficient A,, which is 
related to the correlation function by 

A ,  = u(t)zlim {r3f(r, t)>, (8.24) 
r+ m 

is invariant. Following Kolmogorov, or Comte-Bellot & Corrsin, but replacing the 
invariance of A,  by that of A,, Saffman (1967) derived the decay law (8.21). The 
invariance of A ,  is perfectly confirmed by the behaviour of the case I spectra at very 
low wavenumbers as shown in figures 2 (a) and (c). Thus it may be said that the energy 
decay law (8.21) has a stronger physical basis than (8.22). 

Now that we have established the relationship (8.20), we can derive the similarity 
form of the spectrum (7.1) from Kolmogorov’s similarity form (8.10) as follows: 

E(k,  t)/E, = R-47-(3a+5) /a(a+3)Fz(K/(R~~~3u+5) /4(u+3)) ) .  (8.25) 

The values of the exponents for cases I and I1 are given in table 2. The agreement 
with the values from direct numerical work is excellent. 

9. Miscellaneous statistical characteristics 
Once the energy spectrum function E(k,  t) and the energy transfer function T(k,  t) 

have been obtained numerically, various statistical characteristics of the turbulence 
may immediately be derived from these data. 

9.1. Decay of energy 

The energy of the turbulence &(t) is computed from numerical data on the spectrum 
E(k ,  t)  using (4.6) and the result is shown graphically in figures 7 (a) and (b)  for cases I 
and I1 respectively. The existence of the initial and similarity periods may be clearly 
observed in the curves for large Reynolds numbers (R 2 100) for both cases. 

5 F L M  85 
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In  the initial period, roughly corresponding to 0 < 7 < 3 for case I and 0 < 7 < 2 for 
case 11, S(t) does not change appreciably. Thus the nonlinear transfer of energy to 
higher wavenumbers is carried out without changing the total energy in this period. 

In  the similarity period, roughly corresponding to 7 2 4 for case I and T 2 3 for 
case 11, on the other hand, 8(t) decays in time according to a power law in each case. 
The optimum-fit straight lines for the curves for R 2 200 gives the following law of the 
energy decay for each case: 

(I) 8(t)/(Eoko) = 1 " 7 ~ - ~ * ~ ,  (9.1) 

(11) 8( t ) / (Eoko)  = 1.67-'". (9.2) 

These results are in perfect agreement with (7.3) and (7.4), which were derived from 
consideration of similarity of the spectrum. 

The available experimental data on the energy decay law for grid-generated 
turbulence are not decisive with respect to the numerical value of the exponent. In  
early studies the exponent was taken to be - 1 (see Batchelor 1953, Q 7-1) but later 
experiments gave values ranging between - 1.0 and - 1-4 (see table 1 of Comte-Bellot 
& Corrsin 1966). I n  most experiments the exponent cannot be determined uniquely 
since the energies associated with the velocity components in the streamwise and 
transverse directions obey slightly different decay laws. Comte-Bellot & Corrsin (1966) 
produced almost isotropic turbulence with weak contraction of the wind tunnel and 
obtained an exponent of - 1.25, which is fairly close to that in (9.1). On the other 
hand, a group of more recent measurements by Ling & Wan (1972), Gad-el-Hak & 
Corrsin (1974) and Tassa & Kamotani (1975) give exponents ranging between - 1-30 
and - 1.35, which are closer to (9.2) than (9.1). 

9.2. Kolmogorov's constant 
The rate of energy dissipation ~ ( t )  is immediately obtained from (9.1) and (9.2) as 

(I) €(t)/(Etkg) = 2-07-2.2, (9.3) 

(11) E ( t ) / ( @ @ )  = 2 * 2 ~ - ~ ' ~ .  (9.4) 

By substituting these relations into the spectral form (8.1 l), we can calculate Kolmo- 
gorov's constant K .  The values of E(k,t)  are taken directly from the curves of the 
spectrum at T = 5 , 6 , 7  and 8 for R = 200,400 and 800. The values of K thus obtained 
vary slightly with Reynolds number and time but lie in the following ranges: 

(I) K = 0.60 - 0.62, (9.5) 

(11) K = 0.56 - 0.59. ( 9 4  

It should be noted that these values of K are nearly equal for cases I and 11, showing 
that the small-scale structure of turbulence at large Reynolds numbers is essentially 
independent of its large-scale structure. 

Kolmogorov's constant K has been measured by several experimentalists in various 
types of turbulence. The measurements by Grant et al. (1962) in tidal streams gave 
K = 1-44 and those due to Wyngaard & Pa0 (1972) in atmospheric winds the slightly 
higher value K = 1.7. Inlaboratory turbulence, Gibson (1962,1963) obtained K = 1.57 
(on the axis) and 1.62 (off the axis) in a round jet, Gibson & Schwarz (1963) obtained 
K = 1.34 & 0.06 in grid turbulence and Schedvin et al. (1974) obtained K = 1.47 & 0.18 

5-2  
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FIQURE 8 (a) .  For legend see facing page. 

in grid turbulence. The measurements by Kistler & Vrebalovich (1966) in grid turbu- 
lence yielded K = 2-1 N 2.7, but these high values of K were questioned by later 
authors since their spectra are not consistent with the general trend of spectra at  in- 
creasing Reynolds numbers (see Schedvin et al. 1974). 

The theoretical values of K given by (9.5) and (9.6) are considerably smaller than 
these measured values. We have no definite explanation for this discrepancy, but it 
may be due to the overestimation of the energy dissipation €in the present theory. The 
value of 8 is increased by the presence of the k-1 spectrum, which has not been observed 
experimentally. If, as mentioned in $8.1, this part of the spectrum is modified a t  
higher stages of approximation there is a possibility of obtaining smaller values of 8 

and consequently larger values of K .  

9.3. Skewness of velocity derivative 
The skewness S(t)  of the velocity derivative defined by (5.1 1) gives a non-dimensional 
measure of the strength of the vorticity production. Since S(t) is expressed as an 
integral of E(k,  t )  weighted towards higher wavenumbers, it reflects the behaviour of 
the spectrum in the universal range, or the small-scale structure of turbulence. Thus 
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FIGURE 8. The skewness S( t )  of the velocity derivative. (a) Case I. ( b )  Case 11; 
-- , numerical experiment by Orszeg & Patterson (1972) for R = 21. 

8(t) furnishes us with information on turbulence complementary to that from the 
energy &'(t), which represents the behaviour of the spectrum in the energy-containing 
range, or the large-scale structure of turbulence. 

8(t) is calculated by substituting numerical values of E(k,  t )  and T(k,  t )  into (5.1 1) 
and the result is shown graphically in figures 8 (a) and (b) for cases I and I1 respectively. 
The initial value S(0) is identically zero for both cases according to the initial con- 
dition (5.7). At small Reynolds numbers, 8(t) increases gradually in time to an asymp- 
totic value 8, = S(o0). At large Reynolds numbers, on the other hand, it overshoots 
once and then returns rapidly to an asymptotic value S,. Roughly speaking, #( t )  
undergoes overshooting in the initial period and remains constant during the similarity 
period. 

The asymptotic value S, increases monotonically with Reynolds number and seems 
to approach the following values in the limit of infinite Reynolds number: 

(I) S, = 0.67, (9.7) 

(11) S, = 0.65. (9.8) 
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The agreement of the above values of S, for cases I and I1 makes a clear contrast to 
the disagreement of the energy decay laws &(t) for the two cases, giving further 
evidence of a universality of the small-scale structure of turbulence independent of its 
large-scale structure. 

Earlier measurements of S(t)  in grid-generated turbulence made by Batchelor & 
Townsend (1947, 1949) and Stewart (1951) give values in the range 0.3-0.5, which 
are compatible with the present results at relatively small Reynolds numbers, but no 
further comparison is possible owing to the lack of other statistical data related to the 
measured values. Later measurements by Uberoi (1963) show that S(t)  is nearly con- 
stant in time with a value of about 0.54. This value is fairly close to the present results 
for R = 100 or 200 for either case. Taking into account general features of the spectrum 
and the energy decay law, Uberoi's measurement seems to correspond to our case I 
a t  R = 100. 

Orszag & Patterson (1972) carried out numerical experiments on decaying isotropic 
turbulence starting from the initial condition corresponding to case 11. The curves 
of S(t)  derived from the calculations with R = RA(0) = 21, 35 and 42 [see (5.15)] are 
found to  be identical within statistical fluctuations. The curve for R = 21, which is 
plotted in figure 8 (b )  for comparison, shows striking agreement with the present curve 
for R = 20. The average of S, for the above values of RA(0) is about 0.48, roughly in 
accordance with our result for case 11. 

Measurements of stationary atmospheric turbulence made by Wyngaard & Pao 
(1972) give the value of S(t)  = S, to be in the range 0.70-0.85. These values are con- 
siderably larger than the present values given by (9.7) and (9.8) even taking into 
account the extremely large values RA = 103 N 104 for the measurements. 

9.4. Microscale 
The microscale h(t) defined by (5.12) gives another parameter representing the small- 
scale structure of turbulence. The value of h(t)  is obtained by substituting numerical 
values of E(k, t )  into (5.12) and the result is shown graphically in figures 9 (a)  and ( b )  
for cases I and I1 respectively. At small Reynolds numbers h(t) increases mono- 
tonically in time, whereas at large Reynolds numbers it decreases rapidly from its 
initial value to a minimum and then increases almost proportionally with time. 
Roughly speaking, its rapid decrease a t  large Reynolds numbers takes place in the 
initial period and its linear growth occurs during the similarity period. 

By making use of (4.6) and (4.22), the microscale h(t) may be expressed in terms of 
the energy &(t) as 

Substituting (9.1) and (9.2) into (9.9) we obtain the following similarity laws for the 
microscale: 

h(t)2 = - l O ~ & ' ( t )  (d&(t)/dt)-'. (9.9) 

(I) h(t)2 = 8*3~/(Rkg) = 8.3~4, (9.10) 

(11) h(t)2 = 7-17/(Rki) = 7 . l ~ t .  (9.11) 

It may be seen in figures 9 (a) and ( b )  that these similarity laws are satisfied fairly well 
by the curves for R >, 200 in both cases. 

If we substitute the expression (8.19) for &(t )  into (9.9), we obtain the general 
formula for A ( $ )  for arbitrary a as 

5(a+3) 7 5 ( ~ + 3 ) ~ ~ ,  h(t)2 = ~ - -- - 
a + l  Rki a + l  

(9.12) 
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This formula gives coefficients of %k = 8.3 for case I and 7 for case 11, which are exactly 
and nearly equal to those in (9.10) and (9.11) respectively. 

9.5. Microscale Reynolds number 
The Reynolds number R as defined by (5.1) is based on Eo and ito, which are related to 
the initial conditions and therefore not suitable for characterizing the state of non- 
stationary turbulence a t  an arbitrary time. For such a purpose it is more convenient to 
use the microscale Reynolds number RA(t) defined by (5.14). The variation of RA(t) in 
time is easily obtained from the data on &(t)  ( = # ~ ( t ) ~ )  and h( t )  and is shown graphically 
in figures 10 ( a )  and ( b )  for cases I and I1 respectively. 

At small values of R, the microscale Reynolds number RA(t) decreases gradually and 
monotonically from its initial value RA(0) (+ R). At large R, on the other hand, it 
decreases very rapidly in the initial period and rather slowly in the similarity period. 
The asymptotic behaviour of RA(t) for large R and r is easily derived from equations 
(9.1) and (9.2) for &(t) and equations (9.10) and (9.11) for h(t) as follows: 

(I) RA(t) = 3. 1R0.57-0.1, (9.13) 

(11) RA(t) = 2*8R0'57-0'2. (9.14) 

The agreement of the numerical curves with these asymptotic curves seems fairly good 
in the similarity period for both cases. 

Numerical values of R,(t) due to Orszag & Patterson's numerical experiment for 
R = 21 are plotted in figure 10(b)  for comparison. The agreement with the present 
result for R = 20 is again satisfactory. Unlike the numerical experiments the experi- 
mental data on grid-generated turbulence are usually specified in terms of the so-called 

(9.15) 
mesh Reynolds number R,,= UMIV 

and the downstream distance x /H ,  where U is the wind velocity and M is the mesh 
length of the grid. However, the mesh Reynolds number RIM, being related only to the 
initial state of the grid turbulence, gives no information about the state of downstream 
turbulence unless supplemented by other statistical data. It is this lack of experi- 
mental information that has sometimes hindered immediate comparison of theoretical 
and experimental results. In  view of the fact that the intensity u(t) and the microscale 
h(t)  of turbulence are both very standard quantities in turbulence measurements, it  
may not be difficult to record the value of RA for all statistical data on turbulence. 
Undoubtedly, such a custom will ease the theoretical treatment of the experimental 
results considerably. 

9.6. Self-preservation of energy spectrum 
Since the root-mean-square velocity u( t )  and the microscale h( t )  are statistical quant- 
ities readily measurable by standard experimental techniques it is natural that these 
quantities have been used sometimes for testing the similarity or self-preservation of 
the measured energy spectrum. Such a test was made by Stewart & Townsend (1951) 
for grid-generated turbulence and the measured spectra were found to satisfy approxi- 
mately self-preservation in this sense. Though sufficient data for calculating RA were 
not given in their paper, the measurements by Batchelor & Townsend (1947), which 
seem to have been carried out in approximately the same conditions, give an RA of 
about 20. According to the relation between RA and R given in figure 10 ( b )  for case 11, 
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FIGURE 11 (a). For legend see facing page. 

this value of RA corresponds to an R of about 100. In  fact, the curves for R = 200 for 
case I1 shown in figure 11 ( b )  seem to have the closest resemblance to the measured 
curves of Stewart & Townsend. 

Generally speaking, the spectra normalized with respect to u(t) and h(t) coincide 
with each other fairly well, showing the validity of self-preservation in this sense, 
but the coincidence is less satisfactory for the curves for case 11. These results can be 
explained if we consider the inviscid similarity of the spectrum in the energy-containing 
range and the inertial subrange. 

It immediately follows from @.I),  (9.2)) (9.10) and (9.11) that the scale of the energy 
spectrum in the above normalization changes in time as 

(I) u2A cc t--07, (11) U2hX t-0’9. 

On the other hand, according to the inviscid similarity (7.1) with the exponents 
given in table 1, the magnitude of the spectrum must change in time as 

(I) t-81 = t-0.8, (11) t-81 = t-1.1. 

Thus it is evident from comparison of the above results that the self-preservation with 
respect to u(t) and h(t) is nearly equivalent to the inviscid similarity for case I but is 
less accurately so for case 11. 
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FIGURE 11. The self-preservation of the energy spectrum function E ( k ,  t )  
for R = 200. (a) Case I. ( b )  Case 11. 

The same trend is also observed for the scale of the wavenumber since A-l changes 
in time as (I), (11) A-lcc t-0.5, 

time as (I) p1 = t-0.4, (11) tbl  = t-0.3. 

while according to inviscid similarity, the scale of the wavenumber must change in 

Here again the discrepancy in the exponents is larger in case I1 than in case 1. 
Thus it may be concluded that the self-preservation of the energy spectrum E(k,  t )  

with respect to the root-mean-square velocity u(t) and the microscale h(t) is satisfied 
only approximately and that the normalization of the spectrum would be more 
legitimate if done by using the inviscid similarity law given by (7.1) and table 1. 

10. Summary and discussion 
The statistical properties of turbulence derived from the multiple-scale cumulant 

expansion method may be summarized as follows. At large Reynolds numbers the 
decaying turbulence assumes, after an initial time period, a similarity state in which 
it is governed by simple similarity laws dependent upon only a few parameters. The 
statistical laws stated below are effective in this similarity period. 
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The energy spectrum E(k,  t )  has an inertial subrange in which it is expressed as in 
(8.11) with a K of about 0.6, and the extent of this subrange increases indefinitely 
with the Reynolds number R. 

The spectrum in the energy-containing and inertial ranges satisfies an inviscid 
similarity law (8.7), so that the energy &(t) decays in time according to (9.1) or (9.2), 
at a rate independent of the viscosity. 

The spectrum in and beyond the inertial subrange has a universal form which is 
independent of its low wavenumber structure and consistent with Kolmogorov’s 
similarity law (8.10). The universal spectrum takes the following forms successively 
with increasing wavenumber: (i) the inertial-subrange spectrum (7.6) or (7.7), (ii) the 
k-l spectrum (7.8) or (7.9) and (iii) the exponential spectrum (7.10) or (7.11). 

The energy decay law can be generalized as (8.19), which includes (9.1) and (9.2) as 
special cases. 

The skewness 8(t) of the velocity derivative remains nearly constant in time and its 
value increases with R to a limit of about 0.7. 

The microscale h(t) increases in time according to the general formula (9.12), which 
includes (9.10) and (9.11) as special cases. 

The microscale Reynolds number Rh(t) decreases very slowly in time according to 
(9.13) or (9.14) with a coefficient proportional to Rb. 

The spectrum E(k,  t )  normalized with respect to the root-mean-square velocity u(t) 
and the microscale A ( t )  is found to be approximately self-preserving in time. For the 
purpose of normalization of the spectrum, however, it  would be preferable to use the 
inviscid similarity law (8.7), which is exactly satisfied by the spectrum. 

Most of the statistical results described above are consistent with existing experi- 
mental data at large Reynolds numbers. Probably the only prominent disagreement 
between the present result and measurements lies in the numerical value of Kolmo- 
gorov’s constant K ,  since our value of about 0.6 is considerably smaller than the 
measured values, which lie in the range 1.4-1.7.This discrepancy, however, arises from 
the difference in the viscous dissipation, which is largely influenced by the spectrum at 
higher wavenumbers. It is well known that accurate measurement of the spectrum is 
hampered by several experimental difficulties a t  high wavenumbers. On the other 
hand, this part of the spectrum may possibly be modified by taking into account 
higher-order approximations. Thus the resolution of this discrepancy remains a subject 
for future work. 
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